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Building Planets

You are an interstellar planet constructor. Rich people call up, you build them
a planet. Business has been good lately, and you’ve been getting a lot of new
customers by word of mouth. One day, Zorg from the planet Norg calls you
up and makes an unusual request. He wants to experience some high gravita-
tional forces. So, he wants you to design a planet whereby you maximize the
force due to gravity at some point on the surface. But, he wants you to do it on
a budget. You only get so much mass M to work with, and he’ll go with the
cheapest option, wherein you build the planet out of constant density rock ρ0.
How do you design such a planet?

As followups: At the point with maximum gravitational acceleration, how
does it compare to the same mass spherical planet (assuming they are different
shapes)?
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Solution to Building Planets

Finding the shape

So, we want to maximize the acceleration due to gravity at some point. To
start, lets choose the origin as the point of interest to make things simple. Next,
we notice that if we think a bit, we ought to have cylindrical symmetry in the
solution. I.e. what ever the planet is, it will be a surface of revolution. This
enables us to think in cylindrical coordinates ($, θ, z), and express our density
as dependent on only $, z.

In addition, we know that since we have cylindrical symmetry, we are only
interested in the z components of the force due to gravity, as all other compo-
nents will vanish. So, we begin by computing the acceleration due to gravity
at the origin, expressing it as an integral.

g = Gρ0

∫
cos θ
r2

dV

where here, our integral runs over our planet, whatever that shape may be,
cos θ measures the angle the point of interest makes with the cylindrical axis
and r marks the distance from the point of interest to the origin. Using the
coordinates we set up, we have

d2 = $2 + z2 cos θ =
z√

z2 +$2

So we have
g = Gρ0

∫
z

(z2 +$2)3/2
dV

Where, again our integral runs over our entire planet.
So, here is where the problem would get complicated if we didn’t stop and

think for a moment. If we were to blindly proceed, we would have to worry a
great deal about the boundaries of integration. However, we are interested in
the shape the planet makes. Lets consider what the integrand is telling us here.

What we have done is considered some small chunk of planet located at
(r, z), and the expression

z

(z2 +$2)3/2
(1)

tells us the contribution that chunk makes to the acceleration due to gravity
along the z axis.

What we are trying to due, is build the planet such that each chunk con-
tributes as much as possible to this integrand. So, if we pause for a second
and think about expression (??) as a sort of measure of cost effectiveness, it
isn’t long before we realize that our planet’s surface should correspond to a
constant contour of this expression.

In order to make this point more lucid, in figure 1, you see the function
described plotted on a contour plot. The darker colors correspond to larger
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values of the integrand (ignoring the white in the middle where the computer
program breaks down). So if you imagine yourself building the planet, any-
time you move a chunk of planet from a lighter color region to a darker one,
you increase the gravitational acceleration at the top. So, our planet should
have the shape described by these contours, i.e. our planets surface should
correspond to a level curve of Expression 1.

Figure 1: Contour Plot of Expression 1

So, the curve describing the surface of our planet is

z

(z2 +$2)(3/2)
= C

or
z2 = C(z2 +$2)3 (2)

Which is our answer. Plotted below in figure 2 is a better picture of the shape
in question. Remember that the point you are standing is the point at the top.

I tried to find a name for this shape, but couldn’t.

Comparing to the Sphere

Now for the bonus. We want to figure out the actual acceleration produced by
such a planet and compare it to a sphere. This is a bit trickier. For this we need
to actually evaluate the integral:

g = Gρ0

∫
z

(z2 +$2)(3/2)
dV
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Figure 2: Planet shape with maximal gravitational acceleration at top.

but now know know something about the limits of integration since we know
the curve creating the surface.

But, we need to ensure that we still fix the mass. For that, we need to eval-
uate the integral

M =
∫
ρ0 dV

over our volume. Evaluating this in cylindrical coordinates, we have

M = ρ0

∫∫∫
d$ $dθ dz

where we need to put in the limits of integration. First off, since we have cylin-
drical symmetry, we know that we can integration out θ simply, obtaining

M = 2πρ0

∫∫
$ d$ dz

Where our limits of integration are determined by ensuring the relation

z2 =
C

R4
(z2 +$2)3

where I have added the R4 to ensure that C is dimensionless.
So, lets try and be a bit clever. Looking at the equation for our surface, we

have
z

(z2 +$2)3/2
=

C

R2

where R will denote the radius of our equivalent sphere and is put in there to
make C dimensionless.
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It looks a lot like what we get in two dimensions when polar coordinates so
lets try the coordinate transformation

z = aR cos θ $ = aR sin θ

so that our level curves take the form.

cos θ
a2

= C

and we can figure out our integral.

M = 2πρ0

∫∫
$ d$ dz = 2πρ0

∫∫
aR sin θ aR2 da dθ

M = 2πρ0R
3

∫∫
a2 sin θ da dθ = 2πρ0R

3

∫ π/2

0

sin θ dθ
∫ √cos θ/C

0

a2 da

M = 2πρ0R
3 1
3
C−3/2

∫ 1

0

d cos θ (cos θ)3/2

M =
4
3
πρ0R

3C−3/2 2
5

So, using R as the radius of the sphere with equivalent mass, we have

4
3
πρ0R

3 = M =
4
3
πρ0R

3

(
1
5

)
C−3/2

or (
1
5

)2/3

= C ≈ 0.342

So we’ve got that settled. In fact, we can look at the region plot of the area
under the level curve and the sphere sharing the same mass, seen below in
figure 3.

Next item of business is to calculate the gravitational acceleration at the
surface of our new planet. In order to do this, we must compute the integral:

g = Gρ0

∫∫∫
z

(z2 +$2)(3/2)
d$ $ dθ dz

Integrating out the θ right away and making the same change or coordinates,
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Figure 3: Comparison of our solution and the spherical planet with the same
mass.

we obtain

g = 2πGρ0

∫∫
z

(z2 +$2)(3/2)
d$ $ dz

= 2πGρ0

∫∫
aR cos θ
R3a3

aR sin θ aR2dθ da

= 2πGρ0R

∫ π/2

0

dθ cos θ sin θ
∫ √cos θ/C

0

da

= 2πGρ0RC
−1/2

∫ π/2

0

dθ cos θ sin θ
√

cos θ

= 2πGρ0RC
−1/2

∫ 1

0

d cos θ (cos θ)3/2

= 2πGρ0RC
−1/2 2

5

So, we can compare this to the g due to a spherical planet.

gsphere =
G 4

3πρ0R
3

R2
=

4
3
Gπρ0R

and we obtain

g

gsphere
=

2πGρ0R
1√
C

2
5

4
3Gπρ0R

=
3

5
√
C

=
3

5
(

1
5

)1/3 =
3

52/3
≈ 1.026

K♣ 7



Alex Alemi Building Planets

So, after all that work, in the end of the day, you can only do about 1.03
times better than the sphere if you wanna maximize your gravity. Looks like
your client won’t get quite the experience he was after.
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